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Two lines of research-ne in psycholinguistics and one in linguistics-are 
combined to deal with a long-standing problem in both fields: why the “perfor- 
mance structures” of sentences (structures based on experimental data, such as 
pausing and parsing values) are not fully accountable for by linguistic theories of 
phrase structure. Two psycholinguistic algorithms that have been used to predict 
these structures are described and their limitations are examined. A third algo- 
rithm, based on the prosodic structures of sentences is then proposed and shown 
to be a far better predictor of performance structures. It is argued that the ex- 
perimental data reflect aspects of the linguistic cognitive capacity, and that, in 
turn, linguistic theory can offer an illuminating account of the data. The prosodic 
model is shown to have a wider domain of application than temporal organization 
per se, accounting for parsing judgments as well as pausing performance, and 
reflecting aspects of syntactic and semantic structure as well as purely prosodic 
structure. Finally, the algorithm is discussed in light of language processing. 

Two lines of research-one in psycholinguistics and one in linguistics- 
have recently been examining the temporal organization of sentences. On 
the one hand, psycholinguists have studied the “performance structures” 
obtained from experimental data such as pause durations, transitional 
error probabilities, and parsing values, and have attempted to predict 
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these structures by means of algorithms which take into account the 
surface structure of the sentence and the need of the speaker to bisect 
the output (Grosjean, Grosjean, & Lane, 1979; Grosjean, Lane, Battison, 
& Teuber, 1981; Dommergues & Grosjean, 1981 as well as Cooper & 
Paccia-Cooper, 1980, for a different approach to the same problem). On 
the other hand, linguists have studied the prosodic structure of sentences 
based on standard methods of argumentation in the development of com- 
petence theories. The prosodic theories they have developed are based 
on hierarchical structures of weak and strong relations defined on pairs 
of units at each level of linguistic structure from the syllable, through the 
word and phrase, to the utterance as a whole (Liberman, Note 1; Lib- 
erman & Prince, 1977; Selkirk, 1980, Note 2, forthcoming). 

In the following discussion we wish to combine these two lines of 
research. We will first describe “performance structures” and point out 
their main properties. We will then examine two psycholinguistic algo- 
rithms that can be used to predict these structures and point out their 
limitations. And we will finally propose an algorithm based on prosodic 
structures relevant to linguistic competence, and show how it is a far 
better predictor of these performance structures. In addition, this algo- 
rithm has the quality of containing certain characteristics that are impor- 
tant for language processing. 

1. What are Performance Structures? 

With the advent of generative grammar (Chomsky 1957, 1965), psy- 
chologists attempted to show the psychological reality of such linguistic 
notions as the surface structure of a sentence, its deep structure, and the 
transformations that link the two. To study the reality of surface struc- 
tures, for instance, they used such tasks as recall (N. Johnson, 1965, 
Suci, Ammon, & Gamlin, 1967), relatedness judgments (Levelt, Note 3), 
and pausing (Brown & Miron, 1971; Goldman-Eisler, 1972). Most of these 
studies authenticated the role of major syntactic units in the processing 
of language and concluded that the speaker and listener’s segmentation 
of speech is related-to some extent at least-to the structural description 
of that stream. 

More recently, other researchers have been interested not so much in 
showing the psychological reality of the surface structure of the sentence 
but in examining more closely the exact relationship that exists between 
the structures obtained from experimental data and those proposed by 
linguists. They noted that earlier studies did not always find a perfect 
correspondence between the experimental data and the structures of lin- 
guistic theory, that these studies had used very simple sentences (usually 
monoclausal) and that the sentences had been balanced (the major con- 
stituents, such as the NP and VP, had been of about equal length). Thus 
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Martin (1970), for example, investigated the mismatches that occurred 
between parsing data and linguistic theory. He asked subjects to parse 
sentences by arranging the words of the sentences into “natural groups.” 
The data thus obtained were then hierarchically structured by means of 
S. Johnson’s (1967) clustering program. The results showed that subjects 
did not automatically group the verb with the NP objects, as linguistic 
models would predict, but that in many cases (SV)O clusterings were 
obtained. (See also studies by Suci, 1967; Hillinger, James, Zell, & Prato, 
1976.) 

In the last few years psycholinguists have investigated the sentence 
structures obtained from experimental data; they term these structures 
“performance structures.” In a first study, Grosjean et al. (1979) asked 
subjects to read 14 sentences at Iive different rates. The pausing values 
they obtained were averaged and the means, expressed as a percent of 
the total pause duration in each sentence, were used to make hierarchical 
representations of the sentences. To do this, the following iterative pro- 
cedure was employed. First, find the shortest pause in the sentence. 
Second, cluster the two elements (words or clusters) separated by that 
pause by linking them to a common node, and delete the pause. (If three 
or more adjacent words are separated from each other by the same value, 
make one cluster of these words: trinary, quaternary, etc.). Finally, repeat 
the process until all pauses have been deleted. Such a structure, taken 
from Grosjean et al. (1979), is presented in Fig. 1 (top tree). 

Other experimental paradigms have been used to obtain performance 
structures, and generally these structures have been found to be relatively 
invariant across tasks. For example, Grosjean et al. (1979) asked a dif- 
ferent group of subjects to parse the same 14 sentences and found a mean 
coefficient of correlation of .92 between the pausing and parsing values. 
Dommergues and Grosjean (1981) obtained performance structures by 
means of transitional error probabilities (TEPs) in a recall task (N. 
Johnson, 1965) and found a high correlation between TEPs and parsing 
values: .87 for balanced sentences and .83 for unbalanced sentences. It 
appears therefore that the subjective sentence organization that the 
speaker-hearer imposes on the sentence is relatively invariant across 
experimental tasks. Of course, there are also specificities linked to each 
task and these must not be overlooked. In Fig. 1, we can compare the 
performance structures of a sentence obtained with two different tasks, 
pausing and parsing. Although the similarity between the two is striking, 
we should note that the break between the function words such as OUY, 
her, since, the, and the following content words have much higher relative 
values in parsing than in pausing. This is because these words are cliti- 
cized in speech (leading to very short pauses) but are treated as indepen- 
dent elements in the parsing task. Further, effects on pausing of the com- 
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FIG. 1. Performance structures for sentence G13 obtained from pausing and parsing. The 
values obtained from each task (percentage pause duration and mean complexity index 
(CI)) are used to give height to the nodes of the performance structures along a ratio scale. 
(Adapted from Grosjean, Grosjean, & Lane, 1979.) 

plexity of individual words and of stress probably do not show up in 
parsing judgments. To avoid such task specificities and because we are 
more interested in this paper in the prosodic aspects of speech, we will 
only examine the pause data published by Grosjean et al. (1979). (The 14 
sentences used by Grosjean et al. as well as the percentage pause dura- 
tions found at each word boundary in each sentence are presented in the 
Appendix. They are numbered from Gl to G14 and will be referred to in 
this way in the text.) While we will test out theory solely on the pause 
data, we will point out throughout the paper how the theory can account 
for other data as well. 

If we examine performance structures, for example those presented in 
both Figs. 1 and 2, they appear to have a number of properties the sig- 
nificance of which we cannot know in the absence of a theory that ex- 
plains them. First, the data looks to be broken into “basic units” that 
are rather small. An examination of the frequency distribution of the 154 
pauses obtained from the 14 sentences shows a significant dip at the 7% 
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Sentence G12 
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FIG. 2. The performance structures of three sentences based on the percentage pause 
durations by Grosjean et al. (1979). The pause durations are used to give height to the nodes 
of the structures along a ratio scale. 

pause duration (%PD). In fact, the pauses less than 8% almost always 
separate function words (“little” stressless grammatical words like 
“the”) from words they are phonologically connected with (a phrase like 
“the apple” is pronounced almost as one word). Later, we will show that 
these boundaries, between function words and the words they are con- 
nected with, are the most resistant to pausing. If we look at units sepa- 
rated by pauses 38% we find, however, a motley array indeed: single 
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words (e.g., “apprehensive” in sentence G12), syntactic constituents 
(e.g., the NP “our disappointed woman” in G13 Fig. 1, the VP “lost her 
optimism” in G13 also, the PP “to his files” in G2), and groups of words 
that are not syntactic constituents (e.g., “she discussed” in G12, “he 
brought out” in G3, “by making” in G3, “since the prospects” in G13). 
Later, however, we will demonstrate that a large majority of these units 
do fall under a simple linguistic characterization. 

Second, performance structures appear to have a pretty rich hierar- 
chical structure. The structures are not flat; they do not have relatively 
uniform pausing throughout. Rather, there is quite a range in pause du- 
rations, for example, percent pause durations in sentence G13 Fig. 1 go 
all the way from 1 to 28% with intermediate steps of 6, 15, 24%, indicating 
thereby the clear hierarchical nature of these structures. 

A third property of performance structures is that they are more or 
less symmetrical (or balanced). That is, the main pause break is located 
close to the middle of the sentence; then, each segment on either side of 
the break is itself broken up into more or less equal parts and so on. It 
is this property of symmetry that has led several investigators to incor- 
porate something like a “bisection parser” into their models of pausing 
behavior (see, e.g., Grosjean et al, 1979; Cooper & Paccia-Cooper, 1980, 
and discussion below). We will eventually argue that this seeming sym- 
metry of performance structures is an “epiphenomenon” and is the result 
of the syntactic and prosodic properties of the language. We will need to 
make no appeal to any purely performance property of “bisection” in 
our final account of performance structures. 

In sum, performance structures can be obtained by various experi- 
mental paradigms such as rote and probed recall, slow reading, parsing, 
and marking relatedness judgments. These structures are relatively in- 
variant across tasks although each paradigm does produce certain char- 
acteristic results. In addition, performance structures have three main 
properties: relatively small basic units, hierarchy, and symmetry. It is 
interesting to note that nonlinguistic sequential patterns obtained from 
tapping, or giving oral responses to auditory stimuli have also been shown 
to share these same three properties (Handel & Todd, 1981). 

2. Predicting Performance Structures: Whole Sentence Algorithms 

Below we present two algorithms that can be used to predict perfor- 
mance structures: The first is an algorithm proposed by Grosjean et al. 
(1979) to account precisely for these structures and the second is an 
algorithm proposed by Cooper and Paccia-Cooper (1980) to account for 
pausing, segmental lengthening, and blocking of cross-word conditioning 
of phonological rules. Several points need to be made before describing 
each algorithm and determining how well each accounts for the pause 
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data presented in the Appendix. First, these algorithms are not models 
of actual performance, in that they do not attempt to account for how 
speakers actually produce performance structures. Rather, they isolate 
and combine variables that appear to be important in explaining perfor- 
mance structures. Second, because these are algorithms and not models, 
the prediction procedure they use is often ad hoc. Their most important 
trait is that they attempt to isolate the appropriate factors and not so 
much that they determine precisely the values to give to these factors. 
Third, both algorithms need to have the whole sentence before they begin 
their prediction process. In this sense they are very unlike the basically 
left to right process of spontaneous language production (nor were they 
intended to be). Fourth, both algorithms have a component which deter- 
mines an index of the syntactic strength of each word boundary in the 
sentence. Hence, both algorithms need a surface structure representation 
of the sentence. In our application of the algorithms we have used the x 
theory of phrase structure (Chomsky, 1970a; Jackendoff, 1977),’ but we 
should note that up to now the two algorithms were used with a more 
traditional phrase structure notation (Chomsky, 1965). Finally, to deter- 
mine how well each algorithm predicts the pause data, global and mean 
correlations are computed between the values output by the algorithms 
and the percentage pause durations of the 14 sentences. Global correla- 
tions are based on the total number of word boundaries across all sen- 
tences (N = 154) and mean correlations are based on individual corre- 
lations obtained for each sentence. The two values are usually very sim- 
ilar but both will be reported here. To test the difference between global 
correlation coefticients, we will use a two-tailed test of the equality of 
two correlations coefficients for related samples (Weinberg & Goldberg, 
1979). 

a. The Grosjean, Grosjean, and Lane (GGL) algorithm. This algorithm 
has been used to predict performance structures obtained from pausing, 
parsing, and TEPs in speech, and pausing, parsing, memory probe data, 
and relatedness judgments in American Sign Language (Grosjean et al., 
1979; Dommergues & Grosjean, 1981; Grosjean et al., 1981). It is based 
on the premise that the importance of a particular break (as evidenced 

r We used X-bar theory because it is currently the most sophisticated theory of phrase 
structure. It is, however, not crucial to the understanding of this paper. For those not 
familiar with X-bg theory, ? can be taken to mean a syntactic phrase of any type, and E 
to mean NP, and V to mean VP. One piece of notation that is relevant is “s” (S single bar). 
s is a node that dominates a node COMP and a node S. The COMP node is a “catch-all” 
position for complementizers (“that,” “for,” “who,” “when,” etc.), or preposed (fronted) 
phrases and clauses (“After the game”). S just stands for the basic sentence after the 
complementizer or preposed material. COMP, of course, can be empty (there may be 
nothing in front of the basic sentence). See Section 3 below for some discussion. 
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by the experimental data) is affected both by the relative importance of 
that break as defined by the surface structure of the sentence, and by the 
position of that break within the constituent being analyzed: the nearer 
the middle of the constituent, the more important the break. When con- 
stituents are of unequal length, subjects will attempt to displace the pause 
to a point midway between the beginning of the first constituent (for 
example, an NP) and the end of the second constituent (for example, a 
VP), if at that point there occurs a syntactic boundary important enough. 
It would seem that a compromise takes place between this bisection ten- 
dency and the linguistic structure of the sentence. Thus the algorithm 
takes into account the product of two (sometimes conflicting) demands 
on the speaker: the need to respect the linguistic structure of the sentence 
and the need to balance the length of the constituents in the output. It is 
a simple cyclical algorithm, combining for each word boundary in the 
sentence, an index of linguistic complexity and a measure of the distance 
to the midpoint of the segment. 

Since the Grosjean et al. algorithm (1979; GGL) is published, we will 
not repeat it here. We will use certain abbreviations in the discussion 
below: “CI” is an index of the syntactic complexity at a word boundary; 
it is based on the number of nodes dominated by the word boundary node 
(CI = the number of nodes dominated by the node dominating the word 
boundary, including in the count the word boundary node itself). “%RP” 
is an index of the relative proximity of the word boundary in question to 
the bisection point of the constituent. “GGL values” are the values ob- 
tained from the GGL algorithm; they are the product of the CI and the 
%RP and are obtained in a cyclical manner.2 And “%PD” are the pause 
durations (expressed as a percentage) presented in the Appendix. 

The predicted performance structure for sentence Gil is shown in Fig. 
3 (bottom tree). As can be seen, when it is compared to the top tree (the 
performance structure itself), it is a fairly good match of the pause data. 
The main break in both structures is after book, and the second main 
breaks are after agent and in which. And, indeed, the correlation between 
the predicted values and the %PD is .89. Had the CI values been used 

* The GGL algorithm, briefly, has the following steps: (1) Starting with the largest con- 
stituent that has not been analyzed, compute CI for every word boundary; (2) compute also 
for each word boundary %RP (= the number of words from the start (or end) of the 
constituent to the boundary (whichever is less) divided by half the number of words in the 
constituent, expressed as a %); (3) multiply the two values assigned to each word boundary: 
The boundary with the largest product is the constituent break and retains its product. No 
other product is retained; (4) take each of the constituents just created, calculate CIs and 
%RPs for each word boundary, multiply these values, find the largest product, and ignore 
the others (i.e., repeat steps 1 to 3 for each constituent). Continue until every word 
boundary has a value. 
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by themselves, without correcting for the bisection component (see right 
hand middle tree), the match would have been much less good. The main 
break would have been predicted after agent and not after book, the break 
after consulted would have had too high a value and so on (the correlation 
between the CI and the pause data would then only be .77). 

Overall, the GGL algorithm-which combines each CI multiplicatively 
with a measure of proximity to the midpoint of the constituent-is a good 
predictor of the performance data. The global correlation is .83 and the 
mean of the 14 individual correlations is .86. As expected, the CI by itself 
does much less well: The global correlation between CI and %PD is .76 
and the mean of the 14 correlations is .79. Table 1 presents the individual 
CI and GGL correlations. 

Although the GGL algorithm accounts for 69% of the variance of the 
pause data, it does leave some factors unaccounted for. These not only 
keep the global correlation down to .83 but are also responsible for the 
rather wide range of individual correlations: .63 to .96. One major 
problem with the algorithm is the complexity index: It takes into account 

TABLE 1 
Individual Sentence Correlations between Percent Pause Durations and Various 

Predictors 

Sentence 

1 
2 
3 
4 
5 
6 
1 
8 
9 

10 
11 
12 
13 
14 

Mean 
Global r 

!N = 154) 

No. 
words 

11 
11 
11 
10 
10 
12 
11 
11 
11 
11 
11 
12 
11 
11 

GGL algorithm CPC algorithm 

CI GGL BS CPC 

.69 .ll .87 .81 

.81 .92 .93 .I1 

.75 .96 .I0 .68 

.84 .93 .91 .80 

.75 .82 .96 .86 

.84 .92 .80 .78 

.64 .lO .79 .59 

.92 .92 .84 .80 

.87 .85 .a7 .82 

.88 .96 .79 .84 

.ll .89 .80 .ll 

.65 .63 .83 .I6 

.85 .92 .94 .88 

.82 .88 .84 .83 

.I9 .86 .85 .78 

.76 .83 .81 .75 

PHI algorithm 

.97 

.99 

.99 

.99 

.93 

.98 

.97 

.97 

.99 

.96 

.98 

.96 

.94 

.96 

.97 

.96 

Note. Grosjean, Grosjean, and Lane’s syntactic complexity index (CI) and their algorithm 
(GCL); Cooper and Paccia-Cooper’s boundary strength index (BS) and their algorithm 
(CPC), and the phonological phrase algorithm (PHI). Global correlations (based on all 154 
pauses across all 14 sentences) are also given. 
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the number of nodes dominated by the node immediately dominating the 
word boundary (and in this sense gets at the richness of the structure on 
either side of the boundary) but it does not pay attention to the labels of 
these nodes, This can have quite serious consequences as can be seen in 
Fig. 4. The top tree is the performance structure of the sentence John 
asked the strange young man to be quick on the task. The main break is 
situated between the main clause (John asked the strange young man) 
and the infinitival complement (to be quick on the tusk). Each of these 
two segments are then broken down into smaller groups: John asked/the 
strange young manlto be quick/on the task. The first two groups are then 
separated into Johnlasked and the strange/young man. The left-hand 
middle tree in Fig. 4 shows the x phrase structure of the sentence (minus 
node labels). We note that the linguistic structure is right branching with 
a very short NP subject and a very long VP. We also note that the NP 
“the strange young man” is right branching and that the infinitival com- 
plement has a trinary structure. The tree based on the CI count is pre- 
sented to the right of the syntactic tree. It is very similar to the x tree 
except that the count attaches the verb (asked) to the following NP and 
transforms the trinary infinitival complement into a binary tree. The cor- 
relation between the CI and the %PD is only .64. This is because the CI 
value between John and asked is much too high (syntactically it is the 
main break of the sentence but the main pause break is after man), the 
CI value between the verb (asked) and the following NP is too low, and 
the NP is right branching instead of being binary. Also the CI value 
between quick and on is too low. Can the bisection component rectify 
this? We note first (see bottom tree in Fig. 4) that the algorithm does 
place the main break between the main clause and the infinitival comple- 
ment (that is between man and to be quick). We also note that in the 
infinitival complement, it puts the main break between the VP and the 
PP (although it does not give this break a high enough value). The real 
problem occurs in the main clause. When it is no longer linked to the 
infinitival complement after step 4 of the algorithm, this clause is totally 
right branching with the largest CI value between John and asked (CI of 
5) and the lowest value between young and man (CI of 1). Thus when 
the %RP is combined with the CI, the largest product (300) occurs be- 
tween the determiner (the) and the adjective (strange). Each subpart is 
then reanalyzed and the final values are such that the highest performance 
break (between asked and the) is given the lowest PI value (IOO), the 
lowest performance break (between the and strange) is given the highest 
PI value, and important pause breaks such as between John and asked 
and between strange and young are given close to minimum GGL values 
(134). These mismatches lead the GGL algorithm to predict the pause 
data of this sentence rather poorly (r = .70). 
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A small but important change that can be made to the syntactic struc- 
ture of the sentence (and hence to the CI account) is to link the function 
words to their content words (determiners to nouns, particles to verbs, 
pronouns to verbs, and so forth), before drawing the surface structure 
tree of the sentence. This would ensure that the breaks between function 
and content words would usually have Cls of 1 and would thus be in line 
with the %PDs which are very low at these locations (often 0, 1, or 2%). 
In Fig. 5 we have done just this. As can be seen, in the left-hand middle 
tree, the function words have been grouped with their content words 
(thick lines) and then the rest of the syntactic structure has been drawn. 
This small modification of the surface structure tree does not, admittedly, 
put the main CI value after the main clause but it does change the con- 
figuration of the NP in the main clause (the strange young man is now a 
binary structure) and the CI is now more important at the break between 
to be quick and on the tusk. This results in an increase in the correlation 
between the CI and the %PD: from .64 it goes to .73. Applying the bi- 
section component, we obtain a tree (bottom structure) that is now quite 
similar to the performance structure (top tree). Not only is the main break 
where it should be (as it was in Fig. 4), but now the heights of the node 
between quick and on, and strange and young are appropriate. Although 
the nodes between John and asked and asked and the strange young man 
are still low, the overall correlation (.88) is now far superior to the one 
obtained in Fig. 4 (.70). 

When the correction for function words is applied to the syntactic 
structure of each of the 14 sentences, the global correlation between the 
GGL values and the %PD goes up from .83 to .89, a significant difference 
(t = 5.14, p < .Ol), and the mean of the 14 individual correlations goes 
from .86 to .90. What is especially important is that the range of the 14 
correlations is now much smaller: it goes from .83 to .98 instead of going 
from .63 to .98. We should also note that now the CI measure by itself 
is as good a predictor as the GGL values (global mean of .87 as compared 
to .89) but there is still an indication that GGL does better at predicting 
the %PD of unbalanced sentences. The global correlation between %PD 
and the CI corrected for function words is .79 for the three unbalanced 
sentences (N = 34) and this correlation increases to .85 when the bisec- 
tion component is brought in. However, the difference between the two 
coefficients does not reach significance, probably because of the small 
number of data points. 

Thus, attaching function words to the appropriate content words before 
computing the CI allows the algorithm to account for 79% of the variance 
instead of only 69%, but it does not solve the labeling problem completely. 
The measure still remains blind to the actual nodes in question. An ex- 
ample of this can be seen in Fig. 5 (bottom structure) where in the last 
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stages of the iterative cycle, the algorithm is faced with two segments: 
John asked and to be. The word boundary in each segment receives a CI 
value of 1 and a %RP of 100, giving a PI of 100. And yet, we are dealing 
with two very different breaks: an NP-VP break on the one hand and an 
infinitive marker-copula break on the other. This distinction is made by 
the speaker (10% PD as opposed to 5%) but not by the algorithm (also 
note the difference between the %PD at the John/asked break in G7, i.e., 
lo%, and that at the break between cold and winter in GIO, i.e., 5%). 
Another clear example is seen in Fig. 3 where the break between the and 
agent (Det-N) is given the same GGL value (100) as that between 11u- 
merous and tours (adj-N). In the data, however, one finds a large break 
in the latter case (10%) but only a small break in the former case (1%). 

Other factors may need to be accounted for by the GGL algorithm. 
One of these seems to concern the impact that the length of the words 
has on the preceding and following pauses. Grosjean et al. (1979) found, 
for example, that the %PD of the break preceding a I-, 2-, and 3-syllable 
word (at a constant CI value of 1) remains constant (about 4%) but then 
rises to 9% before a 4-syllable word and to 11% before a 5-syllable word. 
A second factor concerns focus stress. Words or phrases that carry focus 
stress will usually be preceded by rather high %PD. Thus in sentence G6 
(That the matter was dealt with so fast was a shock to him) the focus 
stress is on so fast and therefore it is preceded by a %PD of 18, the 
second highest %PD in the sentence. And in sentence Gl (When the new 
lawyer called up Reynolds the plan was discussed thoroughly) the word 
carrying the main focus stress (thoroughly) is preceded by a pause of 
21%, also the second highest pause in the sentence. In neither case does 
the GGL algorithm give values that are high enough. 

To conclude, the GGL algorithm is simple to compute and is a relatively 
good predictor of the pause data (see Grosjean et al., 1979; Grosjean et 
al., 1981; and Dommergues & Grosjean, 1981 for its ability to predict 
other types of data). The predictive power of the algorithm could be 
greatly strengthened if it took into account the label of the nodes as well 
as word length and focus stress. It is interesting to note that whatever 
changes are brought to the algorithm, it will not help it model any better 
the actual production process followed by the speaker. Admittedly, Gros- 
jean et al. (1981) have proposed that the speaker-listener initiates any 
sentence processing task with a base line structural expectation which is 
an unmarked binary tree. If the surface structure tree is close to the 
unmarked tree, that is, the sentence is balanced, then to that extent the 
processing can proceed in terms of such a structure. When it comes to 
an unbalanced sentence, however, the unmarked tree and the surface 
structure assign different hierarchical structures. This will lead subjects 
to weigh the surface tree by the unmarked tree in performing the hier- 
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archical analysis. One problem with this explanation, however, is that 
the subjects must have the whole sentence before being able to compute 
the surface structure and the unmarked structure and then combine the 
two, whereas there is little evidence that this is the case in real time 
output. This theory can thus explain in part the data obtained from par- 
adigms in which the sentences are known in advance, but cannot account 
for the performance structures of totally new sentences. In addition, few 
sentences are exactly 2, 4, 16, or 32 words long and yet these are the 
only structures that have a totally binary structure. And, lastly, the bi- 
section component in the algorithm is based on the distance from the 
midpoint of the constituent at hand (the further away the word boundary 
from the middle of the sentence, the smaller the %RP) whereas a binary 
tree does not have a strictly decreasing set of nodes on either side of the 
midpoint. In short, the GGL algorithm may be an adequate predictor of 
pause data in read out speech, but it has little to say about sentence 
production. 

b. The Cooper and Paccia-Cooper (CPC) algorithm. In their book, 
Syntax and Speech (1980), Cooper and Paccia-Cooper propose a general 
algorithm to account for segmental lengthening, pausing, and blocking of 
cross-word conditioning of phonological rules. This algorithm, derived 
from their research on the relationship between syntax and temporal vari- 
ables in read out speech, is characterized in the following way by the 
authors: 

In developing this algorithm, the primary aim was to provide a quantifiable 
method of predicting these prosodic effects in individual utterances without re- 
gard to whether steps included in the algorithm or their order of application might 
be analogous to human processing operations involved in programming such at- 
tributes. (P. 182) 

This ambitious algorithm is composed of numerous steps (up to 14) and 
predicts at various points along the way the probability of pausing at each 
of the word boundaries in a sentence, the probability of blocking, the 
probability of segmental lengthening, as well as predicting the duration 
of segments and the duration of pauses (we should note that the authors 
(personal communication) claim that their algorithm is a better prediction 
of phonological blocking and segmental lengthening than it is of pausing). 
In order to determine how well the CPC algorithm predicts our 14 per- 
formance structures, we followed the first five steps outlined by Cooper 
and Paccia-Cooper. The remaining steps were not followed as they do 
not change the relationship among the values obtained at step 5. Hence 
the correlation coefficients obtained with the values predicted at that step 
will not be any different from those obtained at later steps. 

The CPC has the following general characteristics. First, like the GGL 
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algorithm, it is based on the whole sentence. That is, the surface structure 
of the whole sentence is needed in order to predict values at the individual 
word boundaries. Second, the CPC algorithm puts much weight on its 
syntactic complexity index (what it calls the boundary strength). It is 
based on branching depth rather than node height, it considers only nodes 
that flank the word boundary in question (unlike the CI which takes into 
account the full richness of the structures on either side of the boundary), 
it differentiates between the types of nodes (brancing S nodes are given 
more weight and minor category or function word nodes are not counted), 
and it gives added weight to the left flanks in the node count. Thus, 
instead of being a mere reflection of the structural tree as is the CI, the 
boundary strength index (= BS) is a performance algorithm in itself and 
the tree obtained from it is often quite different from its surface structure 
counterpart (see middle trees in Fig. 6). Third, the CPC algorithm has a 
bisection component, but the proximity index is calcualted only on con- 
tent words and bisection applies only when the constituent in question 
contains seven major category words or more. Thus, for most sentences, 
bisection only applies once, whereas in the GGL algorithm it applies 
iteratively until every word boundary has a “largest product.” Finally, a 
correction factor is included for constituents that are either very long or 
very short. This is based on the general finding that the longer the con- 
stituent, the longer the pause (or the segmental lengthening) at the end, 
and the shorter the constituent the less important these temporal vari- 
ables. 

Due to the length and complexity of the CPC algorithm, we cannot 
present it here, and thus, we recommend the reader interested in the 
details to the full description of the ICstep algorithm on pages 180-193 
in Cooper and Paccia-Cooper (1980). In our discussion we will use the 
following abbreviations: “BS” is an index of the syntactic complexity at 
a word boundary; it is based, among other things, on the number of 
flanking nodes on the immediate left and right of the word boundary. 
“CPC values” are the values obtained from the CPC algorithm; they are 
the product of the BS index and a bisection index that is itself based on 
major lexical words. Bisection only applies to constituents that contain 
more than seven major category words. 

A comparison of the performance pause structure of sentence Gl 1 (top 
tree in Fig. 6) and of its predicted structure by the CPC algorithm (bottom 
tree) shows a number of similarities but also some mismatches. The al- 
gorithm predicts the main pause break accurately (it is between book and 
in which) but it has problems with the other values. The second main 
performance break is after agent (18%) but the CPC algorithm gives this 
break a value that is far too low (1.16) and the third main break (after in 
which, 13%) is also given too low a value (.86). Conversely, the breaks 
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after agency’s (5%) and they (3%) are given values that are too high (2.58 
and 1.72). This explains why the correlation between the %PD and the 
CPC values is only .71. The global correlation for all 14 sentences is .75 
which is significantly different from GGL’s .83 (t = 3.01, p < .Ol). The 
mean correlation is .78 and the range extends from .68 to .88. 

To explain why the CPC algorithm only accounts for 56% of the vari- 
ance as compared to GGL’s 69%, one needs to examine Cooper and 
Paccia-Cooper’s BS index, their bisection index, and the way they com- 
bine the two in their algorithm. A comparison of the performance struc- 
ture in Fig. 6 (top tree) and of the corresponding BS structure (middle 
right tree) shows the two to be quite similar. The flanking node count of 
the BS, its greater weighting of left flanks and of branching S nodes, and 
its elimination of the minor category nodes allow it to predict the main 
break correctly (between book and in which) whereas the CI index (Fig. 
3) does not do so. And although consulted is incorrectly paired with the 
agent by the BS algorithm, the value at the break between the two is 
appropriately quite high (4). Also the NP object of the main clause (the 
agency’s book) is parsed appropriately. The subordinate clause (in which 
they offered numerous tours) is not structured correctly by the BS, but 
the values of certain breaks such as those between offered and numerous 
and numerous and tours correspond quite well to the pause data. Thus, 
the BS and the %PD are correlated quite highly (.80) as compared to a 
correlation of .77 with the CI in this sentence. Overall, the BS index 
appears to be a better predictor of the performance data than the CI: .81 
as compared to .76. (The means of the 14 individual correlations are 
.85 and .79, respectively. However, this difference is not signiticant (t = 
1.69, NS).) 

Unfortunately, the predictive power of the BS index is reduced instead 
of increased when the bisection component is introduced in steps 2, 3, 
and 4. As can be seen in Fig. 6, the performance structure predicted by 
the CPC algorithm (bottom tree) resembles less the actual performance 
structure (top tree) than does the BS tree (middle structure on the right). 
Although the main break is predicted correctly, the values of the other 
important breaks are not what they should be. The values of important 
breaks on either ends of the sentence (after agent and after numerous, 
for example) are far too low whereas the values of unimportant breaks 
toward the middle of the sentence (after agency’s and after they) are too 
high. This is because the bisection cycle is only applied once in the al- 
gorithm. Thus breaks near the middle of the sentence receive high bisec- 
tion indices, and hence high BS x Bisection products, whereas breaks 
at the extreme ends of the sentence receive low bisection indices, and 
hence low products. This fact may be helpful for minor breaks at either 
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ends of the sentence, but not for important syntactic breaks whose values 
are thereby considerably lowered. Thus, for instance, the break between 
agent and consulted receives a BS of 4 which represents 57% of the BS 
value of the main break in the sentence (7). This corresponds quite well 
to the %PD at that break (18%) which represents 72% of the value of the 
highest performance break (25%). However, after adding the one cycle 
bisection component in steps 2 and 3, the final product at that break is 
1.16, a value that is only 19% of the value of the predicted main break 
(6.02). A similar situation occurs at the break between numerous and 
tours: the %PD is 10 (40% of the highest %PD), the BS index is 3 (43% 
of the highest BS), but the final CPC algorithm value is .87 (a mere 15% 
of the highest CPC value). We should note that Dommergues (Note 4), 
who has done a careful comparison of the GGL and CPC algorithms, has 
found that if the CPC algorithm contained a cyclical bisection component 
(as does the GGL algorithm), and if it applied to all words and not just 
to content words, its predictive power would be increased but that it 
would not reach a level higher than that reached by the BS itself. This 
would seem to show that the BS index already accounts for the speaker’s 
need to bisect the output and that applying a bisection component can 
either hinder the predictive power of the algorithm (as in the case of the 
one-cycle bisection) or have no effect on it (as when the GGL iterative 
bisection is applied). 

To conclude this section on the GGL and CPC algorithms, we should 
note that each has its problems and each its advantages. The GGL al- 
gorithm could be greatly improved if the label of the nodes were taken 
into account in the CI, as well as if the length of the words and the focus 
stress were accounted for. On the other hand, the GGL algorithm has the 
advantage of being straightforward and easy to work through. It is also 
a good predictor of the %PD as well as of other experimental data such 
as relatedness judgments, parsing values, transitional error probabilities, 
and probe latencies in both speech and American Sign Language. 

As for the CPC algorithm, it too has problems and advantages. On the 
negative side we can note that the algorithm has not been previously 
tested for its predictive power. Had this been done, it would have been 
discovered that adding a bisection component actually hinders, instead 
of improves, the algorithm. In addition, the BS index is somewhat difti- 
cult to compute: Some of the instructions are vague and certain terms 
are perhaps not well defined, so that different BS values may be com- 
puted by different people at the same word boundary. However, BS is 
an interesting index: it takes into account node labels (and hence lowers 
the values between function and content words) and only counts flanking 
nodes, with the effect of balancing unbalanced trees. The BS index by 
itself is therefore a good predictor of the pause data. 
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Both algorithms are considered by their authors as first steps toward 
accounting for prosodic variables in the production of language (however, 
as we have pointed out, they also account for the other data, such as 
parsing values and relatedness judgments). They are both “whole sen- 
tence algorithms,” in that they take as input the entire surface structure 
of the sentence. Furthermore, both compute values in ways that do not 
directly offer very fruitful hypotheses for a real processing model, and 
they are not explicated in terms that are naturally and directly relevant 
to an overall theory of linguistic structure, from either the point of view 
of competence or performance. An algorithm that accounts for the per- 
formance data and that, at the same time, has the property of working 
left to right, building a new representation that integrates all levels of 
linguistic structure in a disciplined way, would seem to offer us a better 
chance of understanding the coding of language into speech. We will now 
turn to such an algorithm, an algorithm that treats the issue of prosody 
directly and on its own terms. 

3. Predicting Performance Structures: A Prosodic Structure Algorithm 

What we would like to know now is why the correlation between the 
GGL and CPC algorithms and the data, though quite good, is not better? 
What further factors need to enter the picture? There is also a deeper 
and more interesting question. What account can we give that will unify 
the various determinants of pausing into a linguistically and psychologi- 
cally relevant system? Such a system, if it exists, would have to be rel- 
evant to the theory of linguistic competence, since we have already 
shown that pausing is determined in large part by syntactic structure, and 
to theories of performance, since we are, after all, dealing with a perfor- 
mance task. 

a. Prosodic structure. There is, in fact, a likely candidate for such a 
unifying system, a system with the right sort of properties, namely the 
level of the grammar that specifies or assigns prosodic (rhythmical) struc- 
ture to sentences. This part of the grammar is not as widely known to 
psycholinguists as the part that assigns segmental phonological represen- 
tations to sentences or the part(s) that assigns syntactic representation to 
sentences. Recent phonological theories (and prosody falls into the pho- 
nological component of the grammer) have greatly modified the classical 
view of phonological theory in Chomsky and Halle (1968). These theories 
see the utterance as having a suprasegmental, hierarchical organization 
in terms of a “metrical” (or rhythmical) tree which is binary branching 
and between whose nodes the prominence relation “strong/weak” is de- 
fined. The details of these theories are not relevant to our claims (and in 
fact, as is the way with theories, are subject to relatively rapid change). 
We will seek, however, to use (and ultimately confirm) some of the basic 
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concepts behind such theories. What is important in such theories for us 
is that they see the sentence as made up of a number of prosodic units, 
units which partly, but not wholly, match the phonological and syntactic 
units of the sentence.3 Each unit specifies the rhythmical properties of 
some level of the sentence, whether it be the syllable, the word, the 
phrase, or the sentence as a whole. For example, the word at the prosodic 
level is seen as made up of “feet,” which are patterns of strong and weak 
syllables, much like in the meter of a poem. 

WORD 

FOOT FbOT 

w 

r I 
ap we 

S A w 

I I 
hen sive 

While it is true that even the rhythmical properties of words influence 
pausing behavior, we are obviously interested in matters above and be- 
yond the level of the word. And what is interesting for us is that words 
at the prosodic level are seen as grouping together into units smaller than 
a syntactic phrase, that is, they group into units called “phonological 
phrases,” hereafter referred to as “$-phrases.” This unit is intermediate 
in size between the word and the syntactic phrase. And it turns out to 
be just the right unit we need to predict the distribution of pauses in our 
data. 

The idea behind a “+-phrase” is extremely simple. Consider, then, for 
a moment a syntactic phrase, say the VP in the top part of Fig. 7: “has 
been avidly reading about the latest rumors in Argentina.” Any syntactic 
phrase has a head. The head is the main word around which the phrase 
is organized (the category from which the phrase is projected, in linguistic 
terminology). While the notion “head” can be rigorously specified in 
linguistic theory (see Jackendoff, 1977), intuitively the head of a VP is 
its main Verb, the head of an NP is its main Noun, the head of an Ad- 
jective Phrase is its main Adjective, and so forth. In our VP (“has been 

3 The version of prosodic theory we have borrowed most from is Selkirk (1980, forth- 
coming, Note 2, Note 5). In work in progress both A. Prince and E. Selkirk are developing 
an alternative phonological theory, based on “metrical grids” (see Liberman, Note l), as 
opposed to the hierarchical metrical theory we have delineated here. Again, however, it is 
not our interest to support the details of a particular phonological theory, but rather to 
demonstrate how certain abstract properties, shared presumably by any adequate prosodic 
theory, give an illuminating account of long-standing issues stemming from performance 
data (see Chomsky, 1976, on the metatheoretical issue involved here). 
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avidly reading about the rumors in Argentina”) the head is the Verb 
reading. In the NP “the small boy from New Jersey” the head is the 
Noun boy. In a phrase, all other words beside the head either modify, 
specify, or complement the head in some way. A +-phrase is defined 
simply as follows: In any syntactic phrase, all the material up to and 
including the head is a +-phrase. Thus, in our example VP, the material 
up to (i.e., “has been avidly”) and including the head (i.e., “reading”) 
is a +-phrase: “has been avidly reading.” And in a NP like “small boy 
from New Jersey,” where the head of the phrase is boy, the material 
“the small boy” makes up a +-phrase (we defer for just a moment what 
happens to the material in the syntactic phrase that is left over). To con- 
struct a tree structure for a $-phrase we just join all the elements 
preceding the head to the head in a simple right branching structure (in 
actuality the nodes would be labeled as “strong” or “weak” in prosodic 
theory, a detail that is not relevant here): 

d 
r 

A 

has been avidly reading 

+-phrases are basically made up of one major stress (on the head) 
preceded by weaker or zero stresses. They have actually been around in 
one form or another, usually under the name of “stress groups,” for some 
time, though current theory fits them into an articulated theory of prosody 
that is part of the grammar as a whole. 

We must stop a moment to make a special proviso about “function 
words.” The matter seems trivial, but it is not. Function words are the 
“little” words that belong to nonlexical categories such as determiner, 
auxiliary verb, or conjunction. Such words bear little or no stress and in 
fact lose their word status, so to speak, in prosodic theory. They behave 
as if they were single weak syllables attaching themselves parasitically 
to a sister constituent next to them (they act like enclitics, they ride 
prosodically on another word).4 They are subject to various phonological 

4 Bisyllabic function words (like “about”) carry some significant stress to distinguish the 
two syllables, though not significant compared to the nonfunction words in the sentence. 
We use the word “clitic” loosely by analogy to the enclitics in a language like French 
(where there is a yet tighter bond between the enclitic and the word it is phonologically 
adjointed to). Two nodes A and B are sisters if they are immediately dominated by the 
same node (note that the direct object of a verb is a sister to the verb since both are 
immediately dominated by VP and that an object pronoun is, thus, attached to the verb 
by “#“). 
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processes, such as vowel reduction, and of course they are resistant to 
any pause between themselves and the word they have adjoined to. Of 
course, there are various complications in how to formally handle func- 
tion words in a prosodic theory, some of which are dealt with in detail 
by Selkirk (1980, Note 2, Note 5, and forthcoming). We will place a “#” 
in any boundary between a stressless function word and the word next 
to it. This # notates that the two words have been almost joined to each 
other for purposes of rhythm or prosody (our # symbol is just a shorthand 
here for the operation of various phonological rules, such as Selkirk’s 
Monosyllable Rule, operating on function words): 

Psychologists, as we have seen, have ignored the fact that function words 
do not behave prosodically as full words to their peril. This treatment of 
function words has an interesting consequence for the view we take of 
prepositional phrases (PPs), an ever-present category in English sen- 
tences. Prepositions are the heads of PPs (they are the category around 
which the phrase is organized), but they are also (most of them) function 
words. As stressless function words they lose their word status prosod- 
ically, and so cannot serve as heads any longer. In particular, they cannot 
terminate +-phrases (since heads terminate +-phrases). Rather, they 
make up +-phrases with the material up to and including the next head 
“down the line,” namely the head of the NP that serves as a complement 
to (that follows) the preposition. In a PP like “about the latest rumors in 
Argentina” (the material left over in our VP after making “has been 
avidly reading” a $-phrase), the preposition “about” is prosodically 
weak and so we make up a +-phrase out of all the material up to and 
including the head of the NP following this preposition (“the latest rumors 
in Argentina,” with head rumors): 

A 
about B the # latest rumors 

Figure 7 shows how, at the prosodic level, the syntactic VP “has been 
avidly reading about the latest rumors in Argentina” is split up into +- 
phrases. On top of the figure we show the syntactic constituent structure 
of the VP, in terms of X-bar notation, at the bottom we show its prosodic 
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has been ovldlv reading 

has been avidly reodlng 

FIG. 7. A VP split into its $-phrases. The top part shows the syntactic constituent structure 
of the VP (in bar-notation); the bottom part shows its prosodic structure. In the prosodic 
diagram, + = a +-phrase, W = a prosodic word, w = prosodically weak element, S = 
prosodically strong element. 

structure (with markings for prosodic word (W), and weak (w) and strong 
(S) prominence relations for those familiar with Se&irk’s theory). Notice 
that we run up to the head of the VP (called V in the diagram)- 
“reading” -and make this material a $-phrase. Then, ignoring “about,” 
since it is a preposition, we run up to the next head of a phrase, the hea$ 
of the NP complement to (following) the preposition “about” (called N 
in the diagram, i.e., “the latest rumors in Argentina” with head “ru- 
mors”) and make this material a +-phrase. This leaves the PP “in Ar- 
gentina, ” which is made a +-phrase, since “Argentina” is the head of 
the NP following “in” (in this case the NP just is “Argentina”). 

It is important to note that the $-phrase need not be isomorphic to any 
constituent of syntactic structure. For example, in the prosodic structure 
in Fig. 7 (bottom), about the latest rumors is not a syntactic constituent 
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of the VP at the top of Fig. 7, nor is has been avidly reading. But, as 
Selkirk points out, there is one important syntactic generalization about 
+-phrases which may be important to a theory of speech processing. 
Every +-phrase ends in the head of a syntactic phrase. The structuring 
of an utterance into $-phrases thus produces information about “head- 
hood,” information that is crucial in understanding the syntax and se- 
mantics of a sentence. 

@-phrases are, of course, not the end of the line. They have to be 
assembled into larger units. These units are called “intonational 
phrases,” hereafter referred to as “I-phrases.” Selkirk assumes that the 
choice of just which or how many +-phrases go into an intonational 
phrase is free. In order to account for real data, however, we obviously 
have to give some procedures for combining $-phrases. In our prosodic 
algorithm for pausing, which we give below, we will do so. 

It is important to step back a minute and point out that the various 
units of prosodic theory (foot, word, +-phrase, I-phrase) are put forth as 
part of a competence theory of linguistic structure. They are posited on 
grounds internal to the structure of the language. For example, Selkirk 
claims that each unit is the domain of application of various phonological 
rules. We have taken these units from current linguistic theory precisely 
because we want to test whether they can account for actual empirical 
data. We hope to suggest a convergence of theoretical and experimental 
concerns. The theory is motivated in the first case by technical consid- 
erations from linguistic theory (which may in the end turn out to be valid 
or not). But we hope to give it independent motivation by showing it to 
be a successful predictor of actual empirical data, as well as suggestive 
for further work in the theory of speech processing. 

b. The PHI algorithm. In constructing our algorithm we used devices 
from current linguistic theory, some of which turn out to have little or no 
impact on the predictions we make. This is not surprising as they often 
involve rather minute considerations that do not turn up too often in any 
small sample of data. For example, once one “corrects” for function 
words, whether one uses traditional phrase structure notation (as in 
Chomsky, 1965) or bar-notation (as in Jackendoff, 1977) does not make 
a lot of difference over our 14 sentences. Though in cases where the two 
theories make different predictions, the bar-notation theory turns out 
usually to be the better. But we wanted by and large to use the “best 
guesses” from linguistic theory we could, if only to ensure that if we 
failed, our failure would not be attributable to antiquated views of sen- 
tence structure. Furthermore, our algorithm was constructed by a linguist 
in advance of knowing what would have much empirical impact or not. 
Thus, we here give our algorithm in its base form, leaving some technical 
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“niceties” of linguistic theory to the footnotes. They may, of course, 
eventually turn out to be quite relevant over a larger span of data. 

To leave our algorithm in a relatively simple form, we will take a mo- 
ment here to define some basic notions. A sentence is made up of a basic 
sentence (= S), which is sometimes preceded by certain sorts of material. 
This preceding material might be, for instance, a complementizer (“that,” 
“for, ” “who, ” “while,” etc., if the sentence is embedded in another 
one), as in the case of the word “that” in front of “John told a lie” in 
the utterance “that John told a lie is amazing.” Or it might be an adverbial 
phrase or a prepositional phrase, as, for example, the prepositional phrase 
“in addition to his files” in the utterance “In addition to his tiles, the 
lawyer brought a bookcase.” There are other possibilities as well. Let 
us call a basic sentence together with any preceding material (of course, 
there may be none) an S (“S-bar”), where S is made up of a node 
“COMP” that dominates the preceding material and a node “S” which 
dominates the basic sentence: 

that 
for 
Adverbial Phrase 
Prep. Phrase 
Embedded Sentence 
or 
nothing (zero) 

This S can be an utterance on its own (as in “In addition to his files, the 
lawyer brought a bookcase”) or embedded in the COMP of another S, 
as in: 

cclm~ I -?zzga- 
discussed thoroughly 

called up Reynolds 

Of course, an S can be embedded in another utterance as either its subject 
or object, as in “That John told a lie is amazing” or “I think that John 
told a lie” (and they can be “extraposed,” as in “It’s amazing that John 
told a lie” or “It is clear that John told a lie”). 

The algorithm we will give below works on one S at a time (if COMP 
is empty, i.e., nothing precedes the basic sentence (S), then we just have 
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the structure S directly over S). It first works on material in COMP 
(material like preceding adverbial phrases or subordinate clauses; of 
course, complementizers, like “that,” are function words and thus end 
up “glued” to the item following them), if there is any, and when this 
material is bundled into +-phrases and I-phrases, it moves on to S. It 
does not move to the next S in the sentence, if there is one, until it has 
finished with S and then bundled COMP and S together under the S it 
started with. The algorithm works left to right, essentially outputting a 
word at a time until it has a $-phrase. It then stops and builds a tree for 
this +-phrase. It moves on, outputting more words and making them into 
$-phrases, all the while bundling the $-phrases into larger prosodic units 
(I-phrases) when it can. When it reaches the end of COMP it stops and 
bundles all its material together, and then moves on to S. Only after it 
has finished S and bundled the material in S together with that in COMP, 
does it move to the next S. That is, it stops at clause (S or S) boundaries. 
We end up with a whole prosodic representation, in terms of +-phrases 
and I-phrases, of the utterance. 

We need a method to count the complexity of a boundary, so that we 
can compare the predictions our algorithm makes with those studied ear- 
lier (the more complex a boundary, the longer the pause we predict). At 
the level of the +-phrase we use essentially the method “CI” of Grosjean 
et al. (1979): the numerical value of a boundary between two words is 
the number of branching nodes dominated by the node dominating this 
boundary, including in the count the word boundary node itself (bound- 
aries containing # do not count as branching for CI values). For example, 
in the +-phrase below we draw arrows pointing to the word boundary 
nodes and give the numerical value of the boundaries as determined 
by CI: 

Our algorithm could be construed in two ways. It could either be seen 
as going through a fully constructed syntactic tree word by word. Or it 
could be seen as going through a string of words one by one left to right 
constructing structure (a prosodic tree) by making guesses about which 
words are heads and where syntactic boundaries are. Such guesses are 
in fact not difficult (though of course not fail-proof either). For example, 
the head of a NP is always a noun, and a noun in the singular or plural 
form; any other noun in a NP is marked with possessive “ ‘s” or is 
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preceded by a preposition (and so is the head of a smaller NP inside the 
bigger one). Knowing what other phrases a noun or a verb subcategorizes 
for in the lexicon allows good guesses as to the boundaries of NPs and 
VPs, and of course, after we have processed an initial NP it is a good 
guess that it is the subject of S and preceding a VP. However, for our 
purposes here, it is easier to talk in terms of the first construal. Nonethe- 
less, it is the fact that our algorithm, which already works left to right, 
could be rephrased in terms of the second construal (by building in the 
proper heuristics) that we hope will give it the future potential to be used 
in actual models of speech processing. We postpone further discussion 
of the left to right nature of our algorithm until after we have presented it. 

Since the algorithm starts by building or outputting +-phrases, we call 
it the “PHI algorithm” (of course, a more sophisticated algorithm would 
also build foot and word prosodic structure). We present the algorithm 
below. 5 

THE PHI ALGORITHM 

We start with a string of words that has its syntactic structure (heads 
and phrase boundaries) marked. in addition, we assume that a “#” has 
been placed between any function word and its sister constituent (i.e., 
between a preposition and its following NP, between a subject pronoun 
and the auxiliary or verb following it, between an auxiliary verb and the 
next auxiliary or verb following it, between an object pronoun and the 
verb preceding it, between a complementizer and the S following it (it 
attaches to the first word of the S), and so forth). For an example we 
give below a string of words (our G2) with some of its phrase boundaries 
marked, and with its nonfunction word heads marked with “H”. Func- 
tion words lose their word status and so cannot count as heads for the 
purposes of prosody. We should note that it is perfectly easy to add a 
step to the algorithm that would cause the algorithm to place “#” bound- 
aries itself. But to avoid clutter we will not do so. 

H (noun) H (noun) 

[In ii Addition [to ii his ii f~leslpp]pp 

HI (noun) 7 (“erb) Y (noun) 
[the t lawyer] Np [brought [the II office's best adding-machine]NP]VP 

The algorithm has the following steps: 

5 As is true of much linguistic work in prosodic theories, some of the insights around 
which PHI is based were anticipated by Martin’s (1972) groundbreaking paper. 
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STEP ONE: Start with the initial S in the utterance (it may be the only 
S in the utterance, or it may be embedded inside another S). Output the 
words of the utterance one by one left to right. Stop at any head of a 
phrase (marked in our example with H, but one could build in heuristics 
at this point) and make all the material output thus far a $-phrase. After 
the construction of each +-phrase, check the following steps. Examples: 

d 

/A In c addition 
(from G2) 

B 

I 
John 
(from G7) 

A Our # disappointed woman 
(from G13) 

A 
She # discussed 

(from G12) 

STEP TWO: Assign the value 0 to any boundary containing a # (unless 
this boundary dominates another such boundary, in which case assign it 
the value 1). To compute the values of all other boundaries in the +- 
phrase use CI. Examples: 

OurA 
1 

woman 
0 

th& wa&ock 
0 2 young 1 man 

(from G7) 

10 

(from G6) 

STEP THREE: Continue outputting words, stopping at each head of 
a phrase, making all the material since the last +-phrase, together with 
this head, a +-phrase. That is, continue outputting +-phrases. As +- 
phrases are produced or output, repeat step 2 above, which assigns values 
to the boundaries in the +-phrase. As step 3 operates it produces $- 
phrases. These must be bundled together into larger units, namely into 
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“I-phrases.” This is done according to the procedures laid out below in 
the three substeps 3A, 3B, and 3C. Each substep represents a special 
principle (3A represents the integrity of the syntactic phrase, 3B the piv- 
otal role of the verb, and 3C bundles what is left over). Use these substeps 
whenever their conditions of application are met. Example: 

(Output $-phrases, repeating steps 1-3, each time checking steps 3A, 3B, and 3C 
below to see if and how +-phrases can be bundled together.) 

STEP 3A (The Syntactic Constituent Rule): All +-phrases that are part 
of the same syntactic constituent, excluding the VP (see 3B), must end 
up bundled together as one larger unit. Do so by right branching and 
adjoining all the +-phrases in a syntactic constituent under successive I 
nodes, as: T 

A I 

' &d] single single [d B d 
syntactic syntactic 
constituent constituent 

(The motivation for this right branching is simply that it follows closely the 
branching in the syntax itself-and all things being equal we want our prosodic 
theory to match up in a simple way with our syntactic theory. Furthermore, 
material preceding a head is more tightly bound, syntactically and semantically, 
to the head the closer it is to the head, and this is also represented in our right 
branching structures here.) 

Examples of the application of 3A: 

/-A /-A 
In F addition to # his # files 

0 1 0 

I 

sh&mssed 

d-d 

tharos an&&s (from G12) 
0 0 0 
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STEP 3B (The Verb Rule): In the typical case the +-phrase headed 
(terminated) by the verb (e.g., “has been avidly reading”) is bundled 
with the following prosodic unit (+- or I-phrase) in the VP to make up a 
prosodic unit (I-phrase) that respects the integrity of the VP (for us, only 
subcategorized complements of the verb make up a VP with the verb; 
adverbs like “thoroughly” in “discuss the matter thoroughly” are outside 
modifiers of the basic VP “discuss the matter”). There is only one case 
where the verb does not pattern with what follows it. If the combination 
of the verb +-phrase and the preceding prosodic unit, usually the subject, 
is a simpler prosodic unit (has less branches) than the prosodic unit fol- 
lowing the verb, then the verb and this preceding prosodic unit together 
make up a larger prosodic unit (I-phrase). Thus, if the subject and verb 
together is a simpler prosodic unit than the unit following the verb (e.g., 
the direct object phrase), then the verb patterns with the subject-oth- 
erwise it patterns with what follows and respects the VP. The motivation 
for this principle is given below (after the presentation of the algorithm). 
Examples: 

(Verb patterns with object) 

Al!d theLh John 
0 

2 young 1 man (G7) 

(Verb patterns with the subject) 

STEP 3C (The General Bundling Principle): For any string of +- or I- 
phrases not already bundled by principles 3A and 3B, bundle these to- 
gether under I. (We will assume that when there are more than two units 
to be bundled together, the bundling is done by left branching and ad- 
junction under I. The reason for this is simply that this allows us to say 
that if a $-phrase is output and does not fall under 3A or 3B, then it is 
simply added as a right branch under I to the previous prosodic unit. In 
fact, however, there are never more than two unbundled units left over 
to be bundled in our data.) Examples: 



PERFORMANCE STRUCTURES 443 

I 

dA?A I 
John 

0 2 young 1 Inan 

(In fact, both these examples follow also from 3A, 
since S is a syntactic constituent.) 

(G7) 

0 0 0 0 

(Predicted, but not tested) 

STEP FOUR: To compute the numerical value of a boundary imme- 
diately dominated by I, count the number of +‘s and I’s this I dominates, 
including in the count this I node itself (this procedure, of course, oper- 
ates any time it can, as $-phrases are output left to right and bundled by 
the preceding steps).6 Examples: 

6 Notice that PHI limits the application of CI (to step 2) which is all to the good since 
CI values peak very fast as one moves further up the tree. However, the correlations 
between PHI and the data which we present below are little changed if one uses CI all the 
way up the tree. 
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6icP2?hes . . . (G2) In f add ion 3 
0 1 0 

(Must stop, since an S boundary has been reached, i.e., this is the end of COMP 
in G2.) 

STEP FIVE: Go on to the following S (having finished a COMP) or S 
(having finished a preceding S). Thus, for example, after completing “In 
addition to his files” for sentence G2, we go on to S and ultimately 
derive:7 

I 

0 3 5 0 2 1 

STEP SIX: Bundle an I-phrase in COMP with the I-phrase in S (this 
follows from 3A in fact). Bundle all remaining I’s of the utterance by left 
branching and adjunction under I (this follows from 3C in fact). Use step 
5 above to compute the numerical value of a boundary immediately dom- 
inated by I. Thus, in the example above, “In addition to his files” will 
bundle with “the lawyer brought the office’s best adding machine” under 
I. The boundary value immediately dominated by this I would be 9. An- 
other example of a prosodic tree for a whole utterance follows: 

’ “The office’s best adding-machine” should, perhaps, have been assigned the structure: 
[[the office’slo[best adding-machine]@]t. This would in fact have made our predictions come 
out even better. However, we do not now know how full NP determiners like “the office’s” 
behave prosodically. 
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John 

The six steps above form the basic part of PHI. Originally, when we 
constructed it we wanted also to consider the effects of sentence stress 
and complex, multifooted words on pausing. It has repeatedly been sug- 
gested that boundaries before sentence stress and before and after com- 
plex words have added complexity and that this is reflected in temporal 
data (see for example, Selkirk, 1980; Cooper & Paccia-Cooper, 1980). We 
hypothesized two rules that would reflect such factors. The rules are as 
follows: 

STEP SEVEN (Complex Word Rule): Add 1 to the value of any 
boundary before or after a complex word (provided this boundary is 
flanked by two items in the same $-phrase). A complex word is a word 
made up of two or more feet (obviously this is only a rough approxima- 
tion). For example, in the sentence “In addition to his tiles, the lawyer 
brought the office’s best adding-machine,” the PHI value between best 
and adding-machine is raised from 1 to 2. And in the sentence, “She 
discussed the pros and cons to get over her surprisingly apprehensive 
feelings, ’ ’ the PHI value between surprisingly and apprehensive is raised 
from 2 to 4 (1 for ech of these two complex words) and the value between 
apprehensive and feelings is raised from 1 to 2 (multifooted words have 
a primary stressed syllable and at least one secondary stressed syllable). 

STEP EIGHT (Sentence Stress Addition): Add 1 to any boundary be- 
fore a sentence final word and its associated function words (attached by 
#) provided this word bears unmarked sentence stress.8 For example, 
the value before adding-machine in G2, before feelings in G13, or before 
thoroughly in Gl is upped by 1. The values in the prosodic tree given as 
an example in step 6, then, are final ones, save for the 3 before “on the 

s In the Appendix we mark with ““’ any item in our 14 sentences which is considered 
to have unmarked (basic, nonemphatic) sentence stress, see Ladd (1980) for a full discus- 
sion. Unmarked sentence stress was marked on any full lexical item (which was not a 
locative or temporal modifier) that terminated both a main clause and the utterance as a 
whole. 
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task.” This is raised by Sentence Stress Addition to 4, since “task” 
carries unmarked sentence stress in this sentence. 

Steps 7 and 9 can make small differences in individual sentences, and 
whenever we have tested them, whether on the data below or elsewhere, 
they have usually made the right prediction. But they apply in our data 
here so few times that across all 154 boundaries in the data, whether or 
not we use them makes no statistical difference. Thus, for our purposes 
here, it is the construction of $-phrases and the bundling of these into I- 
phrases that is really crucial. 

The basic shape of our algorithm is derived from prosodic theory, with 
the essential insight being that there is a unit between the level of the 
word and the syntactic phrase. In some cases, however, prosodic theory 
does not determine any particular choice as to how we should proceed, 
and here we use additional sources of motivation which have invariably 
come from discourse theory. The left branching in steps 3C and 6 was 
chosen because work on discourse structure has repeatedly argued that 
material in a sentence gets more important communicatively (is newer 
and more foregrounded) as we progress toward the end of the sentence 
(see, e.g., DaneS, 1974; Firbas, 1962). Thus, we place such material 
higher in the tree (dominating the material to the left) and thereby place 
a larger break in front of it. 

The bundling principle in 3B, The Verb Rule, is perhaps the most in- 
teresting case. First, the previously mentioned work on discourse has 
argued that the verb can either pattern with the older information which 
is typically in front of it or with the newer information which is typically 
after it. It is the pivot around which the information structure of the 
sentence is organized. Second, data from child language indicates that in 
some cases the verb is a cohesive unit with the object (VO) and in other 
cases a cohesive unit with the subject (SV), depending upon the semantic 
and syntactic properties of the verb (see Lempert & Kinsbourne, 1979). 
Third, the verb has a somewhat ambivalent role syntactically. It is usually 
considered the head of the VP, but some linguists have also argued that 
it is the “head” of the sentence as a whole (see Jackendoff, 1977). Finally, 
work in psycholinguistics on a wide variety of tasks has also suggested 
relative freedom in the patterning of the verb (e.g., Suci, 1967; Martin, 
1970; Grosjean & Collins, 1979; Levelt, Note 3). We thus hypothesize 
that, given its pivotal role, the verb is fairly free to reflect rhythmical 
factors, and 3B is our best guess as to how it does so. But our motivation 
has already suggested that which way it patterns may well also be influ- 
enced by semantic and discourse factors as well, especially in reading in 
context or in spontaneous speech. 
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Finally, in this paragraph we will append a brief note of only technical 
linguistic interest (but a matter which does affect the values at some of 
our boundaries), before turning to a point of much more than technical 
interest. Our technical point here does have implications both for lin- 
guistic theory and for psychologists who would like to design prosodic 
models. We initially developed a system to treat material in COMP based 
on the fact that COMP can contain three rather different sources of ma- 
terial: full phrases, which often have their own intonational contour (“In 
addition to his files, the lawyer”), simple complementizers (e.g., that, 
for, since, when, who), and, finally, wh-phrases that have carried along 
(“pied-piped”) other material (e.g., “in which”). The first sort of COMP 
(full phrase or clause) is always treated by our algorithm as a unit on its 
own and is bundled according to the principles outlined above. Sentence 
initial complementizers and other function words are counted as “up- 
beats” to the +-phrase adjacent to them and which they are adjoined to 
(we use the notation 6 for this). For example: 

- B a 

/ 
\ A 

not quite all 

Both 6 and 4 in the above structures are counted as 4’s in our algorithm. 
Finally, the full interrogative phrases in COMP were treated as upbeats 
to I’s (because they are intermediate in complexity between the first two 
cases), e.g.: 

in i/ which [ . . . . . 1 
S S 

(e.g., they offered numerous tours) 

Such decisions, we must admit, turn out to make little difference for our 
algorithm, though in another context we hope to motivate their linguistic 
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interest (for example, in predicting where simple complementizers can 
and cannot be deleted).9 

Finally, though, there is a quite important point to be made about the 
prosodic structures our algorithm produces. Such structures, leaving 
aside any overt making of syntactic structure, encode and integrate much 
more information than one traditionally associates with rhythmical struc- 
tures. For example, since +-phrases always terminate on the heads of 
syntactic phrases, our structures encode the location of heads of phrases. 
Such information is obviously of semantic import as well, since the se- 
mantics of a phrase is determined by and organized around its head. 
Further, Selkirk argues that each prosodic unit is the domain of operation 
of various phonological rules, and thus relevant to the workings of the 
phonological component. We have already indicated the possibility that 
various properties of our prosodic structures encode or reflect discourse- 
structure properties. And the placement of I-phrases are relevant to what 
can and what cannot bear a separate intonational contour, a property that 
is obviously relevant to semantics and discourse (we have not, however, 
given the rules for determining which I-phrases in spontaneous speech 
would actually carry a separate intonation, though in many cases it is just 
the top one that does so). Finally, we suggest below that our prosodic 
structures also reflect properties of the logical form of sentences. This 
suggests the possibility that such structures are not just prosodic struc- 
tures, but really a basic linguistic structure, perhaps the only one, or at 
least the critical one, in processing. At any rate, the fact the PHI inte- 

g It should be noted that correlations with the data are virtually the same if one does not 
follow our treatment of COMP, but instead just counts complementizers as function words, 
perhaps immune to vowel reduction, output as a single $-phrase with the following material, 
and computes by CI all the way up the tree. Some additional assumptions we make impinge 
on particular analyses in current work in syntax and semantics. A good deal of recent work 
on syntax has argued that certain [V PPlvp structures restructure as [[V Plv NPlvp (Horn- 
stein & Weinberg, 1981; Chomsky, 1980a, 1981). Thus, in such cases, we apply both anal- 
yses and average their values (e.g., wondered about this extraordinary story = wondered 
(about this extraordinary story) and wondered about (this extraordinary story)). In the case 
of one sentence, sentence G14, we average two different analyses for two parts of the 
sentence: since she# was indecisive vs since she#was#indecisive, and her#friend 
asked#her to#wait vs her#friend asked#her#to#wait. The first case is transparent. Either 
she cliticizes to was and comes out as a +-phrase with it, or was cliticizes to indecisive and 
therefore the subject pronoun has to output with this unit as a +-phrase. The latter case is 
a bit more interesting. It is probably the case that we must build into steps 2 and 3 a device 
to lower the value at the boundary between two words which have undergone vowel re- 
duction (Cooper and Paccia-Cooper’s BS builds in a similar device). The averaging approach 
in fact looks plausible, but we do not have enough evidence to make any concrete proposals. 
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grates phonological (e.g., information about #-marked boundaries), syn- 
tactic, and semantic/discourse information, as well as rhythmical infor- 
mation, in one structure turns out, we believe, to be a key reason for its 
success, which we survey below. 

Algorithms are not in themselves interesting unless they are steps on 
the way to a model of the human mind. PHI is based on a prosodic theory 
that is meant to be a model of the native speaker/hearer’s linguistic com- 
petence. Furthermore, it incorporates certain constraints that make it 
begin to approximate a true performance model. PHI works largely left 
to right, but not wholly so. We do not want a model to be wholly left to 
right as this would be tantamount to a claim the people do not have any 
expectations or make any predictions about what is to come (and, after 
all, they do sometimes go down garden paths). But ideally, we want these 
expectations to be locally and quickly resolved. 

PHI does not need a whole phrase structure tree for a sentence in order 
to begin bundling its words into prosodic units. It needs, for the most 
part, only lexical and morphological information to bundle words into $- 
phrases. To bundle these into I-phrases by Rule 3A (the Syntactic Con- 
stituent Rule) it needs to know only whether the lowest level constituent 
it is working on at the time is terminated or not; anything above and 
beyond this is irrelevant. And often the lexical specification for a noun 
or verb gives us a good idea of what sort of structure will or will not 
follow it. For step 3B (the Verb Rule) we do not need even this much 
top-down information, but need to know only whether a sentence has a 
“short subject,” so to speak, and whether the verb is followed by a 
subcategorized (required) complement (information that comes from our 
lexical knowledge). 3C (the General Bundling Principle) requires no top- 
down information, as it simply adds units incrementally to what has al- 
ready come before and been built up. 

Finally, PHI needs to know where clause boundaries are. This infor- 
mation is often quite locally specified, signaled, for example, by the pres- 
ence of a complementizer, infinitive marker, or conjunction. In addition, 
the presence of an embedded clause is often signaled by the lexical re- 
quirements of the verb. For example, in a sentence like G7, “John asked 
the strange young man to be quick on the task,” our lexical knowledge 
that the verb “ask” requires (or at least heavily favors) an infinitival 
clause after its object tells us that there is a clause boundary after “man” 
and before “to” (and this is also signaled by the occurrence of “to” as 
well). This clause boundary will stop the algorithm and predict the pres- 
ence of a large break after “man” (the biggest in the sentence if “ask” 
has only its minimal lexical specifications), since the algorithm requires 
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all preceding material to be a finished higher order unit, and starts anew 
on the following material. lo 

Thus, for PHI to be turned into a more realistic model, we would have 
to add quite local, usually lexically determined, devices to guess bound- 
aries. Its left to right operation needs no more supplementation than this. 
And, in fact, just such devices follow naturally from the competence and 
processing model (“lexical-functional grammar”) developed recently by 
Bresnan and Kaplan (see Bresnan, 1982). 

How well does PHI predict the pause data in our 14 sentences? In Fig. 
8 we present the performance structure of sentence Gl 1, as well as the 
structures predicated by the GGL, the CPC, and the PHI algorithms. The 
structure for the PHI algorithm is obtained simply by taking the numerical 
values assigned by PHI and branching by the iterative procedure we 
discussed in Section 1 (i.e., find the smallest value and cluster the two 
elements separated by this value by linking them to a common node: 
cluster the two elements (words or clusters) separated by the next 
smallest value, and so on, until a tree is built for the whole sentence). 
This procedure simply has the effect of lowering the nodes dominating 
function words, i.e., dominating boundaries containing a #, and assigned 
0 in the PHI algorithm, thus making PHI comparable to CPC and GGL, 
as well as to performance structures. If we had liked, we could have 
produced such trees directly in our algorithm, by having boundaries as- 
signed a # lowered at step 1 of the algorithm. At that point we chose to 
leave uniform right branching in the +-phrase because this is in fact how 
it is done in the prosodic theories we have borrowed from. 

As we saw earlier, the GGL algorithm (see the left-hand tree in Fig. 8) 
is a good predictor of the pause data (v = .89). The main break is located 
correctly (after book) as are the second main breaks (after agent and after 
in which). But the height of the various nodes is not always what it should 
be. Values between agent and consulted, between consulted and the 
agency’s book, between in which and they, and between offered, nu- 

to The numerical values assigned to the largest break in each of our 14 sentences are 
actually somewhat arbitrary. It turns out (importantly) that the actual pause duration of the 
longest pause in each sentence does not correlate all that well (is not a factor 00 the overall 
length of the sentence (for example, it is possible for a short, less complex sentence to have 
a longer main break that a longer, more complex sentence). In fact, our predictions would 
have been even better had we simply assigned an arbitrary high value to the main break in 
each sentence. All the numerical values in the sentences that are less than the highest one 
turn out to be nearly perfect predictors of the actual weight of a boundary vis-a-vis the 
other boundaries in the sentence and across all the sentences. Thus, it is only at the main 
break that our algorithm needs to know how much material follows in the sentence as a 
whole (because it is only there that the lowest constituent it is working on is the sentence 
as a whole), and it is only here that the actual numerical values appear somewhat arbitrary. 
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merous, and tours are all too low. Hence the good but not perfect cor- 
relation between the data structure and the predicted structure. Turning 
to the prediction made by the CPC algorithm (right-hand tree in Fig. 8), 
we note that it does less well (r = .71). Not only does it have problems 
predicting the second main breaks (after agent and after in which) which 
are given values that are much too low, but it also gives too much im- 
portance to minor breaks such as after agency’s and after they. This, as 
we saw earlier, is due to the one-cycle bisection component, which puts 
too much weight on the middle of the sentence and not enough on its 
outer parts. 

In comparision to these two algorithms, the PHI algorithm (bottom 
structure in Fig. 8) produces an almost perfect copy of the performance 
tree. Not only are all branches correct (except for the last one), but above 
all the nodes are of the right height. Note for instance the height of the 
node dominating consulted and the agency’s book or that dominating they 
offered and numerous tours. The only minor mismatch is the height of 
the node dominating the agent and consulted: It is slightly too low in the 
PHI tree. This nearly perfect match between the actual performance 
structure and the predicted structure is reflected in the correlation coef- 
ficient: .98. 

As can be seen in Table 1 (see Section I), the PHI algorithm does 
extremely well on all 14 sentences. The mean correlation is .97 (GGL 
obtains a mean of .86 and CPC a mean of .78) and the global correlation 
is .96, as compared to .83 for GGL and .75 for CPC. Both differences 
are highly significant: t = 10.8, p < .Ol and t = 14.66, p < .Ol, respec- 
tively. What is especially striking about the PHI algorithm is that it pre- 
dicts every sentence equally well: The range for the 14 sentences goes 
from, .93 to .99, a .06 difference, whereas the other two algorithms have 
much larger differences: .33 for GGL and .29 for CPC. 

The PHI algorithm is not only the best predictor of the 14 sentences, 
it is also a very fine predictor of other pause data. Using a magnitude 
production technique, Grosjean (Note 6) obtained pause values for the 
Pop Fan passage. This is a connected piece of discourse that has two 
sentences, eight clauses, and 44 word boundaries. The values obtained 
with the PHI algorithm are correlated .94 with the 44 pause durations, 
whereas the GGL values and the CPC values are only correlated .80 and 
.73, respectively. The difference between the PHI correlation and the 
other two correlations is highly significant: t = 4.09, p < .Ol and t = 
5.61, p < .Ol, respectively. 

Although primarily a prosodic algorithm, PHI is also a good predictor 
of the parsing data obtained by Grosjean et al. (1979). The global corre- 
lation is .93, the mean of the 14 correlations is .94, and the range extends 
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from .86 to .98. But such good prediction of the parsing data should not 
come as a total surprise as Grosjean et al. (1979) found a .92 correlation 
between pausing and parsing values. In fact, the difference between 
pausing and parsing seems to be due almost entirely to the most motor- 
level and stress-related aspects of PHI, i.e., the operation of the proce- 
dure placing “#” in a boundary and addition to boundary values due to 
the Complex Word Rule (step 7) and Sentence Stress Addition (step 8). 
Abstracting from these, parsing and pausing appear to give virtually iden- 
tical results, suggesting that our “prosodic model” is really just a lin- 
guistic model per se, one which captures in a single system information 
related to each level of the grammar. In fact, the main characteristic of 
the PHI algorithm that explains why it accounts for 92% of the pause 
variances of the 14 sentences (as opposed to 69% for GGL and 56% for 
CPC) may well be the fact that it integrates phonological, rhythmic, syn- 
tactic, and possibly semantic information, in a constrained way and in 
terms of one representation. 

PHI does extremely well against the data. Nonetheless, it is clear that 
there are many other factors that may well influence pausing, though in 
much more minor ways than the factors we have indicated. The pho- 
nological segments on either side of a boundary can make a difference. 
There may be tendencies to isochrony over and above the somewhat 
balanced units our prosodic model already gives. Particularly rhythmical 
runs of syllables, alliteration and other sound effects, and two or more 
weak syllables coming together may all affect the strength of certain 
boundaries (as they are known to do in poetry). Consider closing / his 
clilent’s book where the break between closing and his client’s is a bit 
shorter (6%) and that between his client’s and book a bit longer (6% also) 
than we might expect. A break between a verb particle and a following 
NP in the same (lowest) I-phrase should be lowered (e.g., cull up Rey- 
nolds). Clearly, there is a need for an articulated theory of nonlexical 
words and how they function, for example, how they function in chains 
(that she was having a party) and how they are influenced by different 
phonological effects and different syntactic and prosodic positions. Gaps 
(trace and PRO) may influence pausing, as well, perhaps, as the control 
properties of the verb. The semantics of certain words (e.g., superlatives) 
undoubtedly affects pausing, as do factors to do with how expected or 
unexpected a piece of information is. Finally, it is possible that subordi- 
nate clauses and presupposed material work differently in regard to 
pausing at their internal breaks than main clauses in some respects. 

The list could be continued, but the point is clear: With the multiplicity 
of diverse factors that could affect pausing, it is remarkable indeed how 
well our prosodic algorithm correlates with the data. We take this as an 
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indication that prosodic units at and above the level of the $-phrase, and 
the bundling principles we have defined, are the key higher order deter- 
minates of pausing, and that a theory of prosody is the crucial unifying 
system in regard to pausing and parsing. In a sense, what we have done 
is to show that performance structures are quite simply a reflection of 
prosodic structures. 

We can also reach an important conclusion about our data base. Pause 
data of the sort we have used (from readings at various rates), are well 
behaved and do reflect underlying systems of linguistic competence. Such 
data can be used as one sort of inductive base for the development of 
prosodic theories. Surely, there is no necessity for this to have been the 
case. Such data could have turned out to be the product of other cognitive 
systems largely irrelevant to the linguistic faculty itself. 

c. PHI and language processing. The $-phrase, and the prosodic struc- 
tures it is embedded in, may turn out to play a role in language processing. 
If we look at our data, and ignore for the moment boundaries with a # 
in them (which invariably have quite small pauses), it turns out that the 
large majority of the boundaries in the data are $-phrase boundaries. If 
we can continue to abstract away from #-marked boundaries, and call 
those units separated by PDs 38%, “basic (small) units” in the data (see 
Section I), it turns out that 74% of these units are +-phrases. The ones 
that are not $-phrases invariably turn out to be cases where a +-phrase 
has gotten “too long” and has been broken down into smaller units made 
up of complex, multifooted prosodic words. For example, in “She dis- 
cussed the pros and cons to get over her surprisingly apprehensive feel- 
ings” (G12), the first four “basic units” in the data are $-phrases: 
(she#discussed), (the#pros), (and#cons), (to#get over). The last +- 
phrase (her#surprisingly apprehensive feelings) is a long one, with two 
multifooted words, and is broken down in the data into its prosodic mul- 
tifooted words: (her#surprisingly)w (apprehensive)w feelings. The 
speaker can, then, output +-phrases or break complex +-phrases into 
foot structures and create a rhythmical string out of small units which 
are still bigger than single lexical items in the vast majority of cases (note 
that even the prosodic word “her#apprehensive” is bigger than a single 
lexical item). This may make the work of speech production easier and 
more efficient. In any event, we believe that the hypothesis that the 
production system “wants” smallish, rhythmical chunks, bigger than a 
single lexical item, but smaller than the typical phrase, to be a fruitful 
path for future research (for an indication that this is true in spontaneous 
speech, see Chafe, 1982 and Clancy, 1982). 

@-phrases encode what is probably the smallest bit or bundle of co- 
herent semantic information above the level of the single lexical item. In 
fact, the information they encode is realized as a single, often morpho- 
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logically complex, lexical item in many other, less analytic languages than 
English. @-phrases are of three basic sorts: (a) determiners, articles, and 
such grammatical words, plus modifiers, plus a phrasal head (e.g., 
“the#young woman”)-a tightly bound package of conceptual informa- 
tion that might well be lexicalized as a single lexical item in another 
language; (b) subject and/or object pronouns plus auxiliary verbs, plus 
the main verb (e.g., “will#have#been#reading#it”)-material that 
many languages express as a single morphologically complex word via 
the use of enclitics and/or affixes; (c) and, finally, prepositions plus their 
complements (e.g., “in#the#house)-material that in case languages is 
expressed as a single word, i.e., noun + case marker, as in Latin 
“puellae, ” “to the girl.” Thus, the +-phrase may be a prosodic analog 
of material that functions on-line much like “big words” (perhaps, the 
+-phrase is necessitated by the highly analytic character of English- 
research on morphologically complex languages is crucially needed in 
psycholinguistics, here and elsewhere). 

We have already pointed out that PHI integrates phonological, syn- 
tactic, and perhaps even semantic/discourse information in a single rep- 
resentation. Its sensitivity to preposed material (in COMP) and its left 
branching for nonsubcategorized material (i.e., phrases that are not spec- 
ified in the lexicon as optional or obligatory complements of the verb, 
for instance), serve in fact to ensure that topicalized (preposed to the 
front of S) and focused (at the end of a clause) phrases will be high in 
the tree. Such phrases will thus have scope over the material beneath 
them, technically speaking, the material they command (a node A com- 
mands a node B if the first branching node above A dominates B). And 
this is the position that they occupy in all likelihood in a representation 
of logical form (Jackendoff, 1972; Chomsky, 1970b, 1976, 1980b, 1981; 
Gueron, 1980). Thus, for example, in the prosodic representation for G6, 
“That the matter was dealt with so fast was a shock to him,” “that the 
matter was dealt with so fast” is an I-phrase under another 1 node which 
also dominates “so fast” (which cannot bundle with the verb since it is 
not a complement to the verb). This gives “so fast” scope over (it com- 
mands) “that the matter was dealt with,” a position it has in logical form 
(for some degree x of fastness, the matter was dealt with x). Thus, pro- 
sodic representations may also reflect properties of logical form as well. 

Finally, then, the fact that PHI is constructional and left to right, that 
it could be extended by heuristics to be even less top-down than it is, as 
well as the fact that it integrates a variety of linguistic factors in a dis- 
ciplined way, utilizing units that are part of the theory of competence, 
but clearly relevant to the theory of performance, recommends it as a 
future candidate to be an integral part of a general model of language 
processing. 
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APPENDIX: THE 14 SENTENCES USED BY GROSJEAN, 
GROSJEAN, AND LANE (1979) 

The values at each word boundary correspond to the percent pause 
duration (%PD) obtained at that boundary. 

(Cl) When 5 the 0 new 2 lawyer 20 called 3 up 5 Reynolds 30 the 3 plan 10 was 1 discussed 
2 1 th6roughly. 

(G2) In 2 addition 10 to 3 his 3 files 33 the 1 lawyer 8 brought 17 the 0 offices 10 best 13 
Mding-machine . 

(G3) By 0 making 11 his 2 plan 5 known 38 he 0 brought 4 out 19 the 2 objections 16 of 
3 tveryone. 

(G4) That 5 a 5 solution 15 couldn’t 7 be 3 found 30 seemed 9 quite 6 clear 17 to 3 them. 
(GS) Not 11 quite 10 all 17 of 4 the 3 recent 9 files 23 were 7 examined 10 that 6 day. 
(G6) That 7 the 2 matter 13 was 2 dealt 2 with 18 so 5 fast 28 was 5 a 3 shock 13 to 2 him. 
(G7) John 10 asked 17 the 3 strange 8 young 5 man 25 to 5 be 3 quick 19 on 5 the 0 t&k. 
(G8) Closing 6 his 5 client’s 6 book 26 the 2 young 4 expert 15 wondered 8 about 9 this 

11 extraordinary 8 St&y. 
(G9) The 3 expert 19 who 3 couldn’t 5 see 9 what 7 to 4 criticize 29 sat 5 back 14 in 2 

desp&ir. 
(GlO) After 5 the 5 cold 5 winter 14 of 3 that 5 year 32 most 5 people 10 were 5 totally 11 

fed-tip. 
(GllO The 1 agent 18 consulted 11 the 2 agency’s 5 book 25 in 2 which 13 they 3 offered 

10 numerous 10 tburs. 
(G12) She 4 discussed 15 the 1 pros 8 and 1 cons 25 to 1 get 5 over 8 her 6 surprisingly 16 

apprehensive 10 fkelings. 
(G13) Our 5 disappointed 6 woman 24 lost 8 her 4 optimism 28 since 5 the 1 prospects 15 

were 3 too 1 limited. 
(G14) Since 11 she 2 was 13 indecisive 13 that 2 day 34 her 2 friend 12 asked 2 her 9 to 6 

w&t. 
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